Predator-prey Interactions with Delays Due to Juvenile Maturation
نویسندگان
چکیده
This paper focuses on predator-prey models with juvenile/mature class structure for each of the predator and prey populations in turn, further classified by whether juvenile or mature individuals are active with respect to the predation process. These models include quite general prey recruitment at every stage of analysis, with mass action predation, linear predator mortality as well as delays in the dynamics due to maturation. As a base for comparison we briefly establish that the similar model without delays cannot support sustained oscillation, but it does have predator extinction or global approach to predator-prey coexistence depending on whether the ratio α of per predator predation at prey carrying capacity to the predator death rate is less than or greater than one. Our first model shows the effect of introducing an invulnerable juvenile prey class, appropriate, e.g., for some host-parasite interactions. In contrast our second model shows the effect of limiting predation to a prey juvenile class. Finally, in a third model we consider an inactive juvenile predator class, which would be appropriate for many traditional situations in which the generation time for the predator is significantly larger than that of the prey. In all cases the introduction of a juvenile class results in a system of three delay-differential equations from which the two equations for the mature class and the nonstructured class can be decoupled. We obtain some global stability results and identify a parameter α, similar to the α of the unlagged model, which determines whether or not the predator is driven to extinction. With α > 1, and considering the maturation age of the juvenile class as a bifurcation parameter, we obtain Hopf bifurcations in our second and third models, while in the case of juvenile prey (in the first model) the unique coexistence equilibrium remains stable for all positive delays. Although the delay is “physically present” in all three models, we obtain scaled, nondimensional replacement models with that physical presence scaled out. After analyzing the scaled equations we show that all our results hold for the original models. We pursue the bifurcation in the inactive juvenile predator model with numerical simulations. Strikingly similar results over a variety of birth functions are observed. Increases of the maturation delay first produce Hopf bifurcation from steady state to periodic behavior. Even further increase in the delay produces instabilities of the bifurcating periodic solutions with corresponding interesting geometry in a two-dimensional plot of period vs. delay.
منابع مشابه
Dynamical behavior of a stage structured prey-predator model
In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...
متن کاملThe Dynamic Complexity of a Holling Type-IV Predator-Prey System with Stage Structure and Double Delays
We invest a predator-prey model of Holling type-IV functional response with stage structure and double delays due to maturation time for both prey and predator. The dynamical behavior of the system is investigated from the point of view of stability switches aspects. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attac...
متن کاملStability analysis of a fractional order prey-predator system with nonmonotonic functional response
In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...
متن کاملA stage structured predator-prey model and its dependence on maturation delay and death rate.
Many of the existing models on stage structured populations are single species models or models which assume a constant resource supply. In reality, growth is a combined result of birth and death processes, both of which are closely linked to the resource supply which is dynamic in nature. From this basic standpoint, we formulate a general and robust predator-prey model with stage structure wit...
متن کاملA Stage-structured Predator-prey Model
This chapter, originally intended for inclusion in [4], focuses on modeling issues by way of an example of a predator-prey model where the predator has a juvenile stage. A careful derivation of the model is given starting from an age-structured model for the predator population. The method of characteristics is used to reduce the partial differential equations to a system of integro-differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 66 شماره
صفحات -
تاریخ انتشار 2006